The Computer IS the Memory

Tom Coughlin, Coughlin Associates Jim Handy, Objective Analysis

Outline

- The Shape of Things to Come
- Getting Memory & Processing Closer
- Spin-Based Memory and Processors
- Conclusions

The Shape of Things to Come

© 2015 Coughlin Courtes & Objecti

>

Memory/Storage Hierarchy

NVM/Storage trade-offs

- Storage costs(\$/TB)
- Performance
 - IOPS
 - Data rates

Touch Rate

IOPS Required

Minimum Latency Requirement

Persistent Memory Implications

- Retains data during a power loss
 - Instant recovery of state before power down
- Lower latencies than disk
- Lower power than DRAM
- Allows persistent states for Remote Direct Memory Access (RDMA)
- Supports "logic-in-memory architecture"
 - Could lead to new distributed computer architectures

A Timeline For Change

Flash as Memory

- Already exists on PCIe bus
 - Fusion-io pioneered "Extended Memory"
- Now migrating to memory bus
 - NVDIMM-N: DRAM backed by flash
 - NVDIMM-F: Flash on a DIMM

- Presents new problems to existing compute model
 - Memory is persistent
 - Flash is weird (wear, block erase, page write, etc.)
 - SNIA standards evolving to cover this

Flash Already More Economical than DRAM

^{© 2015} Coughlin Associates & Objective Analysis

Getting Memory & Processing Closer

© 2015 Coughlin Associates & Objective Analysis

Processor in Memory

- Pioneering efforts already exist:
 - Micron Technology Automata Processor
 - Venray Technology TOMI
 - Berkeley iRAM (1996)
 - Notre Dame PIM (1996)

Trouble Mixing Logic & DRAM

Logic Process

- High speed
- Variable capacitance
- Multiple metal layers
- Weaker cost focus
- Muddies up a DRAM process

DRAM Process

- Slow speed
- High capacitance
- Few metal layers
- Cost-obsessed
- Undermines a logic process

Alternative Memories to the Rescue

• Byte read/write

Read/write speeds roughly balanced

- No "Erase Before Write"
- Logic-friendly fabrication process
 - Supports easier integration of logic and memory
- Persistent, inexpensive, & fast

Yes, But <u>Which</u> New Memory Will Win?

- Many good alternatives:
 - STT MRAM
 - ReRAM
 - Memristor
 - Racetrack
 - PCM
 - FRAM
- Hard to know which will cross over DRAM & NAND pricing

ReRAM or RRAM Cross Point Array

Cross Point Array in Backend Layers ~4λ² Cell Source: Flash Memory Summit 2013

- Likely NAND replacement
- Multi-film diodes eliminate need for larger CMOS selector

Phase Change Memory (PCRAM)

- Bit addressable, high-density arrays.
- The phase change causes resistance change:
 - Crystalline: Low resistance
 - Amorphous: Higher resistance.

Magnetic RAM (MRAM)

- 3 Major types
 - -Toggle Mode (field driven)
 - Spin TorqueTransfer (STT)
 - Magnetothermal
 MRAM (Heat
 Assisted)

STT MRAM Stack on Single CMOS Transistor

Memory/Storage Performance/Density Roadmap

© 2015 Coughlin Associates & Objective Analysis

20

How Alternatives Will Win

© 2015 Coughlin Associates & Objective Analysis

The Impact of Moore's Law

- "Doubling transistors per chip every year or two"
 - Put differently: "Making two chips into one every year or two"
- Using the 18-month rule of thumb
 - 2015 single-socket server with 96GB of RAM & an SSD
 - 200-300 chips
 - 2030 15 years later
 - About 1/5th to 1/3rd of one chip
- Today's 10,000-server data center could fit in 10 server slots!

Computing structures will adapt to this evolution

• Will Moore's Law stop? Stay tuned!

Summary

- First step: Persistent Memory
- Second Step: Processor in Memory
- Third Step: Processor in Persistent Memory
- Finally: Data Center in a Rack

Architectures and code will have to adapt!

Spin-Based Memory and Processors

© 2015 Coughlin Associates of bject Analysis

Spintronics

Spintronics (Spin + Charge)

•TMR : <u>Tunnel Magnetoresistance</u> •CPP-GMR : <u>Current Perpendicular to Plane- Giant Magnetoresistance</u>

© 2015 Coughlin Associates & Objective Analysis

2014 Emerging NVM Report and Their Manufacture, Coughlin Associates

STT MRAM

- STT MRAM uses the electron spin to create a memory element
- STT MRAM market could exceed \$2 B by 2019

	STT MRAM	DRAM	SRAM
Read Time (ns)	3-5	30	1-100
Write Time (ns)	3-15	50	1-100
# Rewrites	>10 ¹⁵	10 ¹⁶	10 ¹⁶
Input Voltage	1.5	2	None

Everspin 64 Mbit STT MRAM Chip Used for Caching

Over 40 M MRAM Chips shipped

© 2015 Coughlin Associates & Objective Analysis

\$/GB for Memory Technologies

(includes data from Jim Handy, Objective Analysis)

What if Spin Transfer Replaced Charge Transfer (Current)?

- Spin transfer would not generate the heat that electrical currents generate
- Build powerful devices in small spaces
- Spin could be used for both processing and memory/storage

Conclusions

- The storage/memory landscape has more options than ever
- Non-volatile memories will replace volatile memories
- NVM and processors want to come together
- Spin-based electronics are one example of a technology that could put memory and processing in one device

Thanks